Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

2-Methoxy-4-[(5-oxo-2-phenyl-4,5-dihydro-1,3-oxazol-4-ylidene)methyl]phenyl 4-methylbenzenesulfonate

Betül Sen, ${ }^{\text {a }}$ Gülsiye Öztürk, ${ }^{\text {b }}$ Serap Alp, ${ }^{\text {b }}$ Muhittin Aygün ${ }^{\text {a* }}$ and Orhan Büyükgüngör ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Physics, Dokuz Eylül University, 35160 Buca-Izmir, Turkey,
${ }^{\text {b }}$ Department of Chemistry, Dokuz Eylül University, 35160 Buca-izmir, Turkey, and ${ }^{\text {c Department }}$ of Physics, Ondokuz Mayıs University, 55139 Kurupelit-Samsun, Turkey
Correspondence e-mail: muhittin.aygun@deu.edu.tr
Received 17 January 2007
Accepted 2 February 2007
Online 10 March 2007
Molecules of the title compound, $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{~S}$, adopt the Z configuration and have a distorted tetrahedral geometry around the S atom. The oxazolone, 2-phenyl and methoxyphenyl rings are approximately coplanar. The C atom between the methoxyphenyl and oxazolone rings displays a distorted trigonal bonding geometry. Pairs of molecules are linked into dimers through weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Oxazolones are a class of small heterocycles which are important intermediates for the synthesis of several molecules, such as amino acids, peptides, antimicrobial and antitumour compounds, heterocyclic precursors, and biosensors and photosensitive devices for proteins. Some oxazolones have shown a wide range of pharmaceutical properties (Mesaik et al., 2004; Paul et al., 2004; Beccalli et al., 1999; Avenoza et al., 2002). Extensive studies on oxazolone dyes have shown favourable photophysical and photochemical properties in the crystalline state, which has resulted in their use in semiconductor devices, such as electrophotographic photoreceptors, and in non-linear optical materials (Ertekin et al., 2003).

(I)

In the title compound, (I) (Fig. 1), the $\mathrm{N} 1=\mathrm{C} 18, \mathrm{C} 18-\mathrm{O} 5$ and $\mathrm{C} 17=\mathrm{O} 6$ bonds in the oxazolone ring (Table 1) are slightly longer than the corresponding bonds in 4-(4-acet-oxybenzylidene)-2-methyl-5-oxazolone [1.279 (3), 1.381 (3) and 1.193 (3) \AA, respectively; Haasbroek et al., 2003]. The
$\mathrm{O} 5-\mathrm{C} 17, \mathrm{C} 17-\mathrm{C} 16$ and $\mathrm{C} 16-\mathrm{N} 1$ bonds are similar to the corresponding bond lengths in 4-(4-acetoxybenzylidene)-2-methyl-5-oxazolone [1.387 (3), 1.474 (3) and 1.404 (3) \AA, respectively; Haasbroek et al., 2003]. All four rings in the molecule of the title compound are essentially planar, the maximum deviation being 0.008 (4) \AA for atom C5. The oxazolone ring is approximately coplanar with the 2-phenyl and methoxyphenyl rings [dihedral angles $=6.41$ (2) and $7.6(2)^{\circ}$, respectively], but is twisted with respect to the 4 methylphenyl ring [dihedral angle $=57.93(10)^{\circ}$].

The molecule adopts the Z configuration, and the coplanarity and conjugation of the π-electron systems in the aromatic rings are reflected in the $\mathrm{C}-\mathrm{C}$ bond lengths between the oxazolone and methoxyphenyl rings. The $\mathrm{C} 15-\mathrm{C} 16$ bond is significantly shorter than the $\mathrm{C} 11-\mathrm{C} 15$ bond. Because of

Figure 1
An ORTEPIII (Burnett \& Johnson, 1996) view of (I), showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary size.

Figure 2
The crystal packing of (I), showing the weak interaction, doubled by the crystallographic inversion centre, stabilizing the dimers (dashed lines). Atoms marked with an asterisk (*) are generated through inversion (symmetry code: $-x+1,-y,-z$).
the steric hindrance of the oxazolone and aromatic rings, atom C15 has a distorted trigonal geometry, with the angle deviating significantly from the ideal trigonal value, as found also in previously reported analogues (Delgado et al., 2005, 2006). The S atom has a distorted tetrahedral geometry.

The crystal structure of (I) is determined by rather weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Desiraju \& Steiner, 1999). Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (Table 2 and Fig. 2) consists of centrosymmetric dimer units containing a 14membered ring (Aygün et al., 1988).

Experimental

A solution of 3-methoxy-4-(4-methylphenylsulfonyloxy)benzaldehyde ($1.0 \mathrm{~g}, 3 \mathrm{mmol}$), benzoylglycine ($0.54 \mathrm{~g}, 3 \mathrm{mmol}$), acetic anhydride ($0.6 \mathrm{ml}, 6 \mathrm{mmol}$) and sodium acetate $(0.41 \mathrm{~g}, 3 \mathrm{mmol})$ was heated until the mixture just liquified, and then heating was continued for a further 2 h . After the completion of the reaction (determined by thin-layer chromatography), ethanol (20 ml) was added and the mixture was kept at room temperature for 18 h . The solid product thus obtained was purified by washing with cold ethanol, hot water and then a small amount of hexane. The solid was recrystallized from hot ethanol and pure orange crystals were obtained.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{~S}$
$\gamma=99.492(8)^{\circ}$
$M_{r}=449.46$
$V=1072.82(19) \AA^{3}$
Triclinic, $P \overline{1}$
$Z=2$
$a=6.7854$ (7) £
Mo $K \alpha$ radiation
$b=10.2766$ (11) A
$\mu=0.19 \mathrm{~mm}^{-1}$
$c=16.0242(15) \AA$
$T=293$ (2) K
$\alpha=101.338(8)^{\circ}$
$0.48 \times 0.15 \times 0.05 \mathrm{~mm}$
$\beta=94.775$ (8) ${ }^{\circ}$
Data collection
Stoe IPDSII diffractometer
Absorption correction: integration
(XRED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.913, T_{\text {max }}=0.990$
9923 measured reflections 4206 independent reflections 2745 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.067$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$	290 parameters
$w R\left(F^{2}\right)=0.133$	H -atom parameters constrained
$S=1.01$	$\Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3}$
4206 reflections	$\Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

O5-C17	$1.387(3)$	$\mathrm{N} 1-\mathrm{C} 18$	$1.283(3)$
O5-C18	$1.385(3)$	$\mathrm{C} 11-\mathrm{C} 15$	$1.457(4)$
O6-C17	$1.202(3)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.339(4)$
N1-C16	$1.400(3)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.467(4)$
O1-S1-O2	$120.99(14)$	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 6$	$109.30(12)$
O1-S1-O3	$109.56(12)$	$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 6$	$103.23(11)$
O2-S1-O3	$103.03(12)$	$\mathrm{C} 8-\mathrm{O} 3-\mathrm{S} 1$	$119.98(16)$
O1-S1-C6	$109.18(13)$	$\mathrm{C} 11-\mathrm{C} 15-\mathrm{C} 16$	$128.3(2)$
C6-S1-O3-C8	$-85.14(18)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C10-H10 \cdots O $^{\mathrm{i}}$	0.93	2.52	$3.405(3)$	158
C12-H12 $\cdots \mathrm{N} 1$	0.93	2.31	$2.975(4)$	128

Symmetry code: (i) $-x+1,-y,-z$.

All H atoms were treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.96 \AA$ and with $U_{\text {iso }}(\mathrm{H})=k U_{\text {eq }}(\mathrm{C})$, where $k=1.5$ for methyl and $k=1.2$ for all other H atoms.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant No. F. 279 of the University Research Fund) and Dokuz Eylül University Research Funds (project No. 04.KBFEN.100).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD3084). Services for accessing these data are described at the back of the journal.

References

Avenoza, A., Busto, J. H., Cativiela, C. \& Peregrina, J. M. (2002). Tetrahedron Lett. 43, 4167-4170.
Aygün, M., Işik, Ş., Öcal, N., Tahir, M. N., Kaban, Ş. \& Büyükgüngör, O. (1998). Acta Cryst. C54, 527-529.
Beccalli, E. M., Clerici, F. \& Gemli, M. L. (1999). Tetrahedron, 55, 781-786.
Burnett, M. N. \& Johnson, C. K. (1996). Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Delgado, P., Quiroga, J., Cobo, J., Low, J. N. \& Glidewell, C. (2005). Acta Cryst. C61, o477-o482.
Delgado, P., Quiroga, J., de la Torre, J. M., Cobo, J., Low, J. N. \& Glidewell, C. (2006). Acta Cryst. C62, o382-o385.

Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
Ertekin, K., Karapire, C., Alp, S., Yenigül, B. \& İçli, S. (2003). Dyes Pigm. 56, 125-133.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Haasbroek, P. P., Oliver, D. W. \& Carpy, A. J. M. (2003). J. Mol. Struct. 648, 6167.

Mesaik, M. A., Rahat, S., Khan, K. M., Ullah, Z., Choudhary, M. I., Murad, S., İsmail, Z., Atta-ur-Rahman \& Ahmad, A. (2004). Bioorg. Med. Chem. 12, 2049-2057.
Paul, S., Puja, N., Gupta, R. \& Loupy, A. (2004). Tetrahedron Lett. 45, 425-427.
Sheldrick, G. M. (1997). SHELX97 and SHELX97. Release 97-2. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

